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1 Forward

Our research program has emphasized innovative computations and theory. The computations and theory
support and enhance each other. We have a coherent approach which depends upon abstracting impor-
tant mathematical concepts and computational methods from individual applications to a wide range of
applications involving complex continua. including wave refractions, flows in elastic and plastic media. and
complex fluid mixing. We have also developed adaptive computational methods for flows with discontinu-
ities and implemented these methods on modern parallel computers.

2 List of Appendixes

There are no appendixes in this report.

3 Report of Research

3.1 Statement of Problem Studied
3.2 Summary of Most Important Work
3.2.1 Discontinuities and Adaptive Computation

The front tracking method [9]. [ 20] is a computational method that incorporates explicit degrees of freedom
to represent dynamical interfaces and wave interaction fronts. The method is highly developed in two space
dimensions, and allows the resolution of complex. chaotic interfaces between two interpenetrating fluids
[18]. It also allows for the refraction of shock waves by interfaces in a number of cases.

Interface methods (such as front tracking) are the only computational methods to duplicate the exper-
imentally correct growth rate of the mixing zone for Rayleigh-Taylor unstable interfaces [16], [ 21]. Front
tracking has provided the best and most extensive computations for this problem to date. In contrast,
modern finite difference methods without interface methods have vielded values about 30% too low in com-
parison to experiment for the growth rate [36]. In spherical geometry. they display severe mesh orientation
effects as well [1]. Front tracking computations were used in systematic studies of single and multi-mode
Rayleigh-Taylor interactions. as shown for example in Figure 1, to establish the dynamics of elementary
multiphase configurations [21] of interacting bubbles. The same computations are now being used to test
turbulence models and multiphase flow models in the high Mach number compressible context [19].

Our main results are (a) parallelization, (b) three dimensional tracked computations (in progress), (c¢)
complex wave interactions well resolved on a coarse grid and (d) the use of interface methods in tabular
equations of state for multiphase materials.

A. Parallelization. The parallelization of the purelv hvperbolic component of the two-dimensional
front tracking code has been fully implemented on the INTEL iPSC /%60 hypercube. enabling the parallel
computaticn of gas dynamics problems. This parallelization was achieved by domain decomposition [13].
[ 12]. [ 11], [ 14]. The spatial domain is divided into a union of disjoint rectangular subdomains. with the
accompanying division of the tracked physical discontinuity curves among the subdomains. An extended
boundary region of n mesh blocks in each direction surrounds each subdomain providing overlap into
neighboring subdomains. Typically « is an upper bound for the finite difference method's stencil radius.
for example n = 2 for the Lax-Wendroff method. Thus. the boundary region for the i.j mesh block lies
entirely in the eight mesh blocks surrounding it (neglecting the slight complication of physical boundaries).
In Figure 1. we show a typical interface for a complex fluid mixing process. decomposed into 16 subdomains.
with the overlapping boundaries displayed as well.

The tracking algorithm progresses iteratively as:




Figure 1: A typical interface at later time on a two-dimensional 320 x 300 mesh is decom-
posed into 16 sub-interfaces. The dotted vertical strips shown here are the overlapping
border domains shared by neighboring processors.

. Each subdomain updates those boundary regions of neighboring subdomains that lie inside its own
area. (A subdomain never updates its own boundary region. which lies entirely within neighboring
subdomains.)

2. The discontinuities are propagated and solution obtained for the next time step solely within each
subdomain, using boundary data from its boundary region. which is stored on local memory.

This scatter-gather type of algorithm is most efficient if all subdomains are equally busy during step 2.
This requires a sub-domain assignment algorithm which will produce subdomains, not of equal measure
in spatial volume but of equal measure in propagation/solution update work. At present. a rather simple
sub-domain assignment is in place. Current gas dynamics calculations have shown the parallelized code to
be running at an efficiency of approximately 90%. The scientific power can be seen from the observation
that the full parameter study [8] from which Figure 1 is extracted would have taken an estimated 17 yvears
to complete on a Sun Microsystems SPARCstationl.

B. Three dimensional computations. Of critical physical interest is the ability to do computations
in three spatial dimensions. We have begun this development for the front tracking code. Algorithms
for triangulating surfaces in three dimensicns and for re-gridding dvnamical points of the surfaces have
been implemented. A preliminary algorithm for generating volume filling grids which match moderately
complicated surfaces was constructed but further work in this area is required. Additionally, data structures
and code changes to handle arbitrary (spatial) dimensionality have been implemented into the front tracking
code to support calculations in 1-. 2- and 3-dimensions.

C. Complex wave interactions. The analysis of the transitions from regular to irregular refractions
of shock waves through material interfaces has resulted in an improved understanding of this process. The
ideas developed here were applied to the passage of a shock wave through a bubble [27]. yielding a substan-
tial improvement in numerical resolution of the refractions. Figure 2 shows illustrates the production of
an anomalous wave refraction during the shock-bubble interaction. As a result of this work, it was shown
that the analysis of elementary waves given in [20] was incomplete due to an overly restrictive genericity
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Figure 2: The collision of a shock wave in water with an air bubble. The fluids ahead of
the shock are at normal conditions of 1 atm. pressure. with the density of water 1 g/cc and
air 0.0012 g/cc. The pressure behind the incident shock is 10 Kbar with a shocked water
density of 1.195 g/cc. The grid is 60 x 60. The contours in Figure 2.b and Figure 2.c are
plotted on a scale of 0.001 - 10 Kbars. while the pressure range in Figure fg:anom.d is 0
- 8.5 Kbars. The tracked fronts are shown in a dark line superimposed on the pressure
contours.

assumption. and that at least one additional elementary node. the total internal reflection, must be al-
lowed. Subsequent work has applied these ideas to the Richtmyer-Meshkov problem of a shock accelerated
fluid interface [19]. It was argued [26] that for the transition of a regular (self-similar) shock refraction
into an irregular configuration. transitions can be classified into five basic cases depending on the shock
impedance across the interface and on whether the reflected wave i~ a shock or rarefaction. This classifi-
cation provides the background necessary to incorporate the complex configurations produced by irregular
shock refractions into the front tracking method. Figure 3 illustrates one such complex interaction that
occurs for a slow-fast interaction of a shock with a fluid interface. Here we see that after transition the
original transmitted wave moves ahead of the incident shock. leading to a complex cascade of secondary
wave interactions. Note that the detail of wave interaction resolved with front tracking in one or two grid
blocks might take close to one hundred grid blocks for comparable resolution by other methods. The anal-
vsis and numerical implementation of the scattering behavior of irregular shock refractions is an essential
component for full scale front tracking simulations of shock accelerated interfaces. The late time mixing
behavior of the interface initially shown in Figure 3 is given in Figure 4. It should be noted that at this
point the fluid interface is strongly affected by shock reflections from the nearby wall at the bottom of the
computational domain.

D. Interface Methods for Tabular Equations of State. The front tracking software was used
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Figure 3: The passage of a shock wave through a random interface separating two gases
of differing densities. The computation is shown together with two levels of graphical
enlargement. At transition, the transmitted shock is moving faster than the incident shock
leading to the production of a precursor wave. In the finest enlargement, one can see complex
wave diffraction patterns resolved down to the level of a single mesh block, displaying a
unique capability of front tracking. The long time behavior of this solution (Figure 4)
exhibits interface instability similar to that of Figure 1.

as an interpolation scheme for piecewise smooth but discontinuous data. This method was applied to
the representation of data in EOS tables with phase transitions [10]. Starting from original data given
on a coarse grid, spline interpolation was used as an initialization. to give piecewise smooth data defined
on a finer grid. Lower order but computationally more efficient linear-bilinear interpolation was used to
interpolate the functions on the fine grid. This mapping of data from coarse to fine grid is computationally
expensive, but is only performed once. For repeated evaluations, a significant improvement in the quality
of the interpolated data was obtained in this way, see Figure 5. This interpolated. piecewise smooth data
was then used to solve Riemann problems for gasses with a real equation of state. It was found that a real
gas £EOS Riemann problem could be solved in no more than about 3 ta R times the time required for a y -
law gas. This efficiency depended on the use of precomputed and preinverted tables for the sound speed.
the Riemann invariants and for thermodynamic variables expressed as a function of various combinations
of independent variables. With the use of additional tables. a time at most 3 times the v - law gas could
have been achieved in all cases studied [35].




Figure 1: .\ detail showing the late time chaotic mixing resulting from the acceleration
of a fluid interface by a shock wave. The figure shows the late time mixing zone for the
similation described in Figure 3. The detail is taken from the bottom of the computational
cell and shows the shape of the fluid interface from Figure 3 500 microseconds after the
shock collision.

3.2.2 Chaotic Flows

Our results provide a growing body of knowledge for the Rayleigh-Tavlor mixing layer. with agreement
among theory. experiment and direct sinulation for nearly incompressibie flows. We also found a surprising
new phenomenon. discovered computationally. for compressible flows. in a substantiallv increased growth
rate of the mixing layer. and a loss of universality which characterized the incompressible case.

The mixing process is characterized by a penetration height h(f:. which measures the distance of the
most advanced bubble from the position of the unperturbed interfuce. This height obevs a scaling law
h = at?, in which the growth constant is found to be a universal constant a = .06 in the incompressible
experiments of Read and Youngs. We found agreement with this experimental growth rate in our nearly
incompressible computations [21] and [22]. but found surprising new phenomena for even moderately
compressible fluids. namely. the mixing rate o« may exceed twice it~ incompressible value. In addition.
some loss of universality was observed through dependence of the ¢rowth rate on details of specification
of the ensemble of initial conditions [8]. { 7]. The dependence of the growth rate a on dimensionless
compressibility M is shown in Figure 6.

In [23]. [ 24]. and [23] a statistical. chaotic theory of the Rayleigh- Tavior mixing laver is given in tetiis of
a renormalization group fixed point model. The renormalization approach is used since the chaotic mixing
laver involves dvnamically changing length scales. The model is validated by comparing the predicted
growth rate of the mixing laver with experiments and numerical computations [37]. The three main
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Figure 5: A comparison of isobars for tabulated equations of state. The plot on the left
shows the computed isobars for a SESAME [31] equation of state near a phase boundary.
Since the rational interpolator used in SESAME does not account for the discontinuous
derivatives near the phase boundary. the resulting isobars are inaccurately represented in
this region. The plot on the right shows the computed isobars obtained by the interface
based interpolator which accurately represent the equation of state properties of the fluid
near phase transition. Both plots are shown with the phase boundary curve superimposed
as a dotted line over the isobars.

ingredients of this fixed point analysis are (a) a superposition hvpothesis to specify the bubble - bubble
interaction dynamics. (b) a theory of single bubble dynamics, (c¢) a statistical model to incorporate the
above solutions to the one and two body problems for the bubble dvnainics.

The superposition hypothesis was given in [21] and [22]. It describe~ rhe motion of the outer envelope
in the Rayleigh-Taylor mixing layer as a superposition of individual bubble envelopes. The superposition
theory explains the phenomenon that the velocity of a more advanced bubble in a multi-bubble system
exceeds the velocity of a bubble of the same size in the single bubble syvstem. This theory also explains the
fact that a less advanced bubble in a multi-bubble system changes its direction of movement at the end of
its period of interaction with a more advanced neighboring bubble. The superposition hypothesis has the
virtue of containing no free parameter. The predictions of the superposition hypothesis are confirmed. to
within the accuracy of the experiments. for the incompressible case by analysis of the experiments of Read.
Comparison with numerical computations for compressible fluids shows agreement with the superposition
hypothesis for small compressibility values. but reveals disagreement for larger values of compressibility.
outside the range covered by experiments. An explanation for the disagreement and a possible basis
for modification of the superposition hvpothesis is given in terms of density stratification of the fluids.
Disagreement is also noted in the cases where bubble splitting occurs. presumably due to omission of high
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Figure 6: Plot of the growth rate constant vs. the compressibility. The vertical bars indicate
the variance associated with the choice of random number seed.

frequency bubble splitting modes in the envelope description. Unexplained disagreement for computations
at small Atwood number is also noted.

The superposition theory depends critically on a good description of the single {periodic) bubble dy-
namics. An extension of a previous theory for the growth of a single bubble with periodic boundary
conditions. from a three parameter ODE to a four parameter ODE. was presented to remove an earlier
ansatz which lacked physical basis. Two of the four parameters of the new theory are determined. The
remaining two must be determined through explicit numerical calculations. Such a determination. over a
limited range of the independent variables (Atwood number A and dimensionless compressibility M?) was
presented [22].

The statistical model on which the renormalization group fixed point is based describes an ensemble
of bubbles of the same radius, whose heights are defined by a uniform probability measure restricted to a
bounded interval. The statistical dynamics of flow with bubble merger is developed by treating pairwise
interactions by drawing two adjacent bubbles randomly from the ensemble. The dynamics of each pairwise
merger is given by the superposition hypothesis of [21], namely that. before merger, each bubble moves with
a velocity given as the sum of a scaled single-bubble velocity, as treated in [22], and an envelope velocity.
The bubble of higher height doubles in size and the lower bubble is removed from the statistical ensemble
at the end of the merger. Differential equations are then obtained for the common radius. average height
and variance of height of the ensemble of bubbles as a function of time. The variance of height is shown
to have a natural interval. [ts lower limit is a trivial fixed point corresponding to an (unstable) interface
consisting of bubbles of identical height. Its upper endpoint is defined by instantaneous merger for bubble
pairs of extreme separation. By studving the behavior of the rate of change of variance with time at these
two endpoints. the existence of a non-trivial fixed point is shown. Figure 7 shows a numerical verification
of this renormalization group fixed point for the Rayleigh-Taylor instability.

An extensive body of experiment and computation predicts a constant acceleration for the leading edge

=1




Bubble Bubble
Envelope = Envelope
- - -
S S
Ll w
- -
<PV> — <p><V> <p?> — <p>*

Figure 7: The numerical verification of a renormalization group fixed point for the bubble
envelope of a Rayleigh-Tavlor unstable interface. The graphs shown here represent the
superposition of distinct time steps. Both axes are scaled by the renormalization group
dynamics. The fixed point of the bubble envelope is shown in each graph. For the second
correlation. on the right. the entire graph is approximately fixed in scaled variables.

of this mixing region. consistent with the conclusions of the fixed point predicted by this theorv. The
upper and lower limits placed on the value of the fixed point in this theory, are shown to vield upper and
lower limits for this constant acceleration that are in full agreement with experiments and computations
on incompressible and nearly incompressible systems. Further studies of the theory. including prediction
of transient behavior, dependence on density ratio and compressibility. assumptions on uniform bubble
radius. and extension to three dimensions remain to be carried out.

We are now studying the interior of the mixing zone itself. using computational data from well resolved
direct simulation. Statistical analyvsis of fluctuating quantities reveals structiire which is more complex than
simple diffusion [8]. [ 7]. In particular. steady acceleration (Ravleigh-Tavlor unstable) induced mixing of
a randomly perturbed interface shows non-monotone density contours and interior structure in second
order correlations of fluctuating quantities. This is consistent with theories of turbulent boundary layers.
which show at least three distinct regions within the mixing layer. The studv of fluctuating quantities
suggests renormalization group fixed point behavior near the edge of the mixing zone only and in the
nearly incompressible case only (8], [ 7].

3.2.3 Nonlinear Waves and Nonlinear Materials

Striking new developments in the theory of nonlinear waves for conservation laws have given rise to a new
picture for wave interactions in the large. Improved computational algorithms and modeling of physical
phenomena are to be expected as the consequences of these results are explored. It is now widely recognized
that nonlinear waves may contain two or more significant length scales. As a consequence the ratios of
these length scales become important dimensionless parameters. controlling macroscopic wave speed and
structure [29] for three phase flow. chemically reactive flow. elasticity and MHD waves [3].

Plohr. Marchesin et. al. [28] have produced a very important unifying framework for the fundamental
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Figure X: Shown here is a two dimensional slice of the wave manifold WV for a representative
2 x 2 system of conservation laws with an elliptic region. The figure shows the influence of
Hopf bifurcation on the admissibilty of shock waves. when the viscous admissibility criterion
is taken into account. The connecting orbit, oriented from {"_ to I',. represents a traveling
wave between these two states. i.e. a viscous-admissible shock wave. The figure shows a
“bubble™ region in which the connection between {"_ and [, is prevented by the occurence
of a limit cvcle, which starts at the Hopf manifold. The limit cvcle ends in the homoclinic
loop, bevond which the connection from ' to [y is established. The five phase diagrams.
with associated singular points ['_ and {';. show orbits in the three open regions to the
right of the characteristic manifold. and at two transitional boundary points. Only the
shocks in the shaded region are admissible.

waves occurring in general svstems of n conservation laws. By using a local change of coordinates. the
Rankine-Hugoniot relation is shown to take the form R - F = (). The solution set where R = 0 is a
trivial solution set representing constant states and rarefaction waves. By eliminating this trivial solution
set. it is shown that the solution set W, where F = 0. is a smooth manifold of dimension n + | and is
the closure of the set of shock points. W is termed the fundamental wave manifold. Significantly, both
rarefaction and shock waves are represented within W, in accordance with the heuristic idea that shocks
of infinitesimal strength are infinitesimal rarefaction fans. The rarefictiou points form an n dimensional
submanifold C of W, the characteristic manifold. which may have sinzularities at points corresponding to
coincident wave speeds. The familiar rarefaction curves in state space {or the system of conservation laws are
projections of a single family of curves in C which form a one dimensional foliation of C. Correspondingly.
the manifold WV is foliated by two families of curves. called shock curves since thev project onto the classical
shock curves in state space. The work shows how this wave manifold framework can shed light on two
fundamental problems in the theory of conservation laws. The first is the phyvsical admissibility of shock
waves determined by properties of dvnamical svstems parameterized by the points of W. The second
problem is the bifurcation of wave curves. which correspond to loss of transversality between rarefaction.
shock. and composite foliations. and to the boundary of the region of admissible waves.

The wave manifold. YV, contains many nonadmissible shock waves. The most fundamental notion of
admissibility presently known is the viscous profile ..terion, which states the shock wave must be the limit.
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as the viscosity tends to zero. of traveling waves for an associated viscous conservation law. This viscous
conservation law gives rise to a dynamical system with critical points corresponding to the states on the
left and right of the shock wave. In [6]. some of the mathematical issues which will be associated with loss
of admissibility are studied. Of particular interest is the demonstration that Hopf bifurcation can be the
mechanism which leads to loss of admissibility. Similarly. homoclinic orbits are associated with a loss of
admissibility. In Figure 8 we see that the connecting orbit hifurcates when crossing the Hopf bifurcation
locus. so that one end is connected to the limit cycle emerging from the Hopf bifurcation. The connection
between the end states of the shock wave is thus broken. implying the nonadmissibility of this shock wave.

The transitional waves are the most curious of the novel shock waves discovered in the recent renewal of
interest in Riemann problems. These waves have dynamical system orbits which connect saddle points to
saddle points. and thus they appear to be inherently uns.able. However. they have heen essential to obtain
a satisfactory existence and uniqueness theory for solutions of Riemann problems. Stability analysis has
been used in the search for a more satisfactory basis for accepting these waves as physically meaningful.
In [38] nonlinear stability was studied. and on a numerical level. established for these shock waves.

Modeling of phase transitions was shown to depend on an additional degree of freedom (the order
parameter), enlarging the system to give internal structure [17]. T.-P. Liu in his earlier work on nonequi-
librium thermodynamics [30] also considered a larger system as a regularization of a smaller one. Related
studies of the phase field model of phase boundaries [4]. [ 5] follow this point of view. The relation between
kinks and the loss of convexity in the equation of state and multiple or split waves in Riemann problems
was developed in a svstematic fashion in [32].

A fully conservative Eulerian formulation of the elasticity equations [33]. [ 34] has recently been ob-
tained. This formulation promises to be of considerable importance. In cases of large deformation. Eulerian
computations are necessary to avoid the severe mesh distortion of Lagrangian grids. A thermodynamically
consistent form of the elasticity constituitive laws derived from a free energy with a small deviatoric strain
was given [33]. [ 34]. This formulation allows arbitrary fluid behavior in the pressure and thermal modes.
and depends on a single shear modulus to describe shear strength. It was shown that this formulation
is the lowest order approximation to a general free energy in the case of a small deviatoric strain. An
elasticity Riemann solver was constructed for this case. (‘omputations have shown the distinct advantage
of the fully conservative approach {2]. [ 15].

In our study of nonlinear materials. a new and fullv conservative formulation of plasticity was also
formulated [34]. Based on the importance of the conservation formulation for computations in gas dynamics.
we expect that this discovery could be of very fundamental character.
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